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Abstract

Until recently the method of integral operators as initiated
by S. Bergman [3] and I. N. Vekua [75] has been restricted to the
case of elliptic equations and the investigation of steady state
phenomena. In these lectures we survey the recent developments
on the use of integral operators to investigate equations associated
with evolutionary phenomena, in particular parabolic equations,
pseudoparabolic equations, and the reduced wave equation in a
stratified medium. The topics discussed are transformation
operators for partial differential equations, reflection principles
and their application, the propagation of radio waves around the
earth, the propagation of acoustic waves in a spherically stratified
medium, low frequency approximations to acoustic scattering problems
in a spherically stratified medium, heat conduction in two temper-
atures, inverse problems in the theory of heat conduction, and
Runge's theorem for parabolic equations. Open problems are given

at the end of each section.
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I. Introduction

Since 1960 a variety of books ([3], [5], [l0], [il], [41],

(421, [(43], [53], [75]1, [76]), two conference proceedings ([57],
[66]1), plus chapters in several books on partial differential
equations ([4], [6], [34], (40], (47], [78]) have been written on

the use ef integral operators and/or function theoretic methods

in the theory of partial differential equations. Most of this work,
until recently, has been concerned with elliptic equations and

steady state problems. Recently an analogous approach has been
discovered for equations associated with evolutionary phenocmena,

in particular parabolic equations, pseudoparabolic equations, and

the reduced wave equation in a stratified medium. These lectures

are devoted to surveying some of these recent developments, and

their application. Only a brief outline of proofs will be given,

and the reader interested in detailed proofs is referred to the

list of references. Although most of the material presented in

these lectures has been developed since the appearance of the author's
monographs [10] and [11l], preliminary versions of some of the results
of these lectures can be found in these books. Open problems, of
varying difficulty, will be given at the end of each section.

Before proceeding perhaps a hiased words on the role of
integral operators in the theory of linear partial differential
equations are in order. In view of the large strides that have been
made in recent years in developing a general theory of linear

partial differential equations, it is sometimes suggested that the




theory of boundary value problems for linear partial differential
equations is essentially a closed book. That this is far from the
case can be attested to by any applied mathematician. More often
than not the general theory is not applicable to the particular
problem being investigated due to the fact that the operator is

not definite, the domain is unbounded, the boundary data is dis-
continuous, or even that the problem is improperly posed (c.f.,
Section VIII). In other cases, problems arise due to the need to
actually compute a solution rather than "simply" establish its
existence. For example, an existence theorem based on solving an
integral equation defined over an unbounded three dimensional
domain is often of limited use for computational purposes. In
order to handle problems such as these, a variety of methods have
been developed which are roughly speaking characterized by the fact
that, although they are highly effective for the problems they are
designed to treat, by their very nature are restricted to rather
limited classes of equations. Perhaps the best example of this is
the use of generalized double and single layer potentials in the
study of partial differential equations with constant coefficients
(although this method can be applied to equations with variable co-
efficients, the practicality of such an approach from the point of
view of analytic and numerical approximations is rather limited).
From one point of view the use of generalized potential theory can
be seen as a branch of the theory of integral operators, i.e., those

operators mapping continuous functions onto solutions of linear




partial differential equations with constant coefficients. However,
in these lectures integral operators will, in general, be viewed in
a more restrictive sense, i.e., that in which the integral operator
maps solutions of a partial differential equation with constant
coefficients onto solutions of a partial differential equation with
variable coefficients (or occasionally analytic functions onto
solutions of a partial differential equation). Obviously, integral
operators in the latter sense and generalized potential theory can
often be combined (c.f., Section V), and hence the distinction is
not a sharp one. In fact it is perhaps more fruitful to view
generalized potential theory and the method of integral operators
as complimentary, one dealing with partial differential equations
with constant coefficients and the other treating certain classes
of partial differential equations with variable coefficients. 1In
view of the above described role of the method of integral operators
in the theory of linear partial differential equations, the primary
interest is not so much in the integral operator itself, but rather
in how it can be used to yield constructive methods for solving
boundary value problems arising in various areas of applied mathe-
matics. Of course, as with any fruitful area of mathematics, in
the process of achieving the desired aim many other problems of
independent interest arise along the way. Hence, although our pri-
mary aim in these lJectures is to illustrate the use of integral
operators in applied mathematics by considering various problems

arising in the theory of wave propagation and heat conduction, we
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shall also find the need to examine such topics as reflection prin-
ciples and the analytic continuation of solutions to partial dif-

ferential equations, Runge's theorem for parabolic equations,

generalized moment problems, and the completeness of certain systems

of entire functions.

II. Transformation Operators for Partial Differential Equations .

In this section we shall construct the integral operators to
be used in the next four sections. The term transformation opera-
tors is used because of the similarity of our operators to trans-
formation operators for ordinary differential equations (c.f.,

Appendix 4 of [56]). We first consider the parabolic equation
uxx+ a(x,t)ux+ b(x,t)u = c(x,t)ut ; cfx,E)> o (2+1)

and note that by a change of independent and dependent variables
(2.1) can be reduced to an equation of the form

uxx+ g(x,t)u = ug : (2.2)

Hence we restrict our attention to (2.2) and for the sake of sim-
plicity assume that g(x,t) 1is an entire function of x and t .
We look for solutions of (2.2) defined in a neighborhood of the
origin in the form

X
hix,t) + J P(s,x,t) h(s,t)ds

X (2:3)

il

u(x,t)

(I + g)h




5.
where h(x,t) is a solution of the heat equation
hxx = ht .
Substituting (2.3) into (2.2) and integrating by parts show
that (2.3) will be a solution of (2.2) if
1(%
P(x,x,t) = - 5{ q(s,t)ds (2.5)
0

-y

P(—X,X,t) = 0 .

A solution of (2.5) can be constructed by iteration (c.f. [11], [12]).

Note that since P 1is a Volterra operator, 1 + P is invertible.

~

For future applications we note that if wu(0,t) = 0 then (2.3) can

be rewritten as

X
h(x,t) + } (P(s,x,t) - P(-s,x,t)lh(s,t)ds
0

u(x,t)
(2.6)

]

X
h(x,t) + I P(s,x,t)h(s,t)ds.
0

By using the operator I + P many properties of the solutions to the
heat equation can also be obtained for solutions of (2.2). As an

example we have the following theorem:

Theorem 2.1: Let {An} be a sequence of complex numbers such that

lim “13-2' >0
n+o A
n




and define 2
= il x-2"¢t
h™(x,t) = e R &
n
300
Then {(I+P)hg} is complete (with respect to the maximum norm)

in any rectangle R for solutions u(x,t) of (2.2).

Proof: Let u(x,t) be a solution of (2.2) in R such that u(x,t)

is continuous in R . We can write u = (I+P)h. Hence it suffices
to show that {hn} is a complete family of solutions for h__ = hg
in R. In R, hEE) can be approximated by an entire solution

h(x,t) of the heat equation ([11], [15]), and ﬁ(x,t) depends
continuously on its Cauchy data in any thin complex neighborhood of

5
g, -
x =0 ([11]). The result now follows from the fact that {e - }

are complete in such a neighborhood if 1lim —25 508 561 ).
n>e X
n

We now turn our attention to elliptic equations with spherically
symmetric coefficients defined in a domain in Euclidean three space
RB. We first consider elliptic equations defined in bounded domains
and present a version of R. P. Gilbert's "method of ascent" ([42],
[44]). The construction given below is due to D. Colton and R. Kress

([31]). Let D be a bounded starlike domain in R3 such that

D € {|x| < a} and consider the equation.

Ayu + A (14B(r))u = 0 (2.7)

defined in D where B(r) ¢ Cl[O,a], x = |x|. We look for a

solution of (2.7) in D in the form




X
u(rler(p) = h(x,0,¢) + J G(rls;)\)h(slel(b)ds
0
{2.8)
= (I+§)h
where (r,0,%) denote spherical coordinates and
A3h = 0 (2.9)
in D. Substituting (2.8) into (2.7) and integrating by parts
shows that (2.8) will be a solution of (2.7) provided
Zis 2 7o o _ 2 2
E [brr + = Gr + AT (1+B(r))G] = s [GSS + = GSI
kz £ (2.10)
GlE 3h} = = TJ s(1+B(s))ds
et

and G(r,0;1) 1is bounded for 0 < r < a. The solution of (2.10) can
be found by iteration ([31]). The function G(r,s;X) can in fact

be related to the Riemann function for a related hyperbolic equation:

Theorem 2.2: G(r,s;A) = —(%)1/2R3(r,r;s,0) where R(x,y:&,n) 1is
2
the Riemann function for ny + AE (1+B(vxy))R = 0 where the

subscript denotes differentiation with respect to §&.
Proof: [42]), [44].

We now want to present a complimentary operator to I + G valid
for exterior domains. This operator is due to D. Colton and

W. Wendland ([33]) and D. Colton and R. Kress ([30]). Let D be




a bounded starlike domain in m3 and b a real number such that

{[3} < b} D. Consider (2.7) defined in m3\o and assume that
i ..

B(r) € Cl(b,w), B(r) = 0(e B ), and X < 2yb. We look for a

solution of (2.7) in RB\D in the form

ufr,;8,¢) = hir.8.4) + J K(r,s;A)h(s,0,¢)ds
5

20Dl
= (I+K)h
where now h(r,0,¢) 1is a solution of
. 2
mgh + A h = 0 22}
in R3\D. It is also possible to construct an operator whose

domain is solutions of Laplace's equation; however for purposes of
application to problems in scattering theory we restrict ourselves
here to an operator whose domain is solutions of the Helmholtz

equation. Substituting (2.11) into (2.7) and integrating by parts

shows that (2.11) will be a solution of (2.7) provided

rz[K- + % K+ A‘(l+B(r))K] = sz[K L+ % K. AZK]
rr T sSs s S
e
K(r,r:X) = = 57 [ sB(s)ds {213}
b

K(r,s:\) = O(e—YrS+x s/4yr) for b X £ € 8§ < o

The solution of (2.13) can be found by iteration ((30]).




*— K prescribed here
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Note that if h(r,06,¢) satisfies the Sommerfeld radiation condition

lim rtéﬁ - iAh] =0 (2.14)
so does u(r,0,¢) = (I+K)h. We finally observe that since G and

K are Volterra operators, I + G and I + K are invertible.

-~ ~ ~

Open Problem: Obtain asymptotic estimates as A »+ + for

G(r,s;\) and K(r,s;\A). Such results would be useful in connection

with various problems arising in scattering theory.

Open Problem: Construct transformation operators for

A3u + B(rju = ug having as domains solutions of the heat equation

A3u M (For partial progress in this direction see [65]).

I11. Reflection Principles and Their Applications.

We first consider the parabolic equation

u . + a(x,t)ux + b(x,t)u = ut (3ed}

defined in a domain of the form pictured below.
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x=sl(t) x=52(t)
\\\ D

We assume that u(x,t) € C2(D){\ CO(B), that a(x,t) and b(x,t)

v
x

are entire functions of x and t (this assumption can be relaxed),
and that sl(t) and sz(t) are analytic in a neighborhood of
[O,tO]. Define the "reflection" of D across o : x = sl(t) by

B = 6ot 25, (t)-s,(t) < x < s (£), 0<¢t<tgl.

Theorem 3.1: Suppose u(x,t) 1is a solution of (3.1) such that

u(x,t) = £(t) on o where f(t) is analytic in a neighborhood
of [O,tO]. Then u(x,t) can be uniquely continued as a solution

*
of (3.1) intc Do U D .

Proof ([111, [12], [13]): A change of variables transforms the

problem into the case when af(x,t) = 0, sl(t) = 0. By constructing
a special solution of a non-characteristic Cauchy problem for (3.1)
we can further reduce the problem to the case when £f/&) = 0. From

Section II we have

x -~
wix,t) = DX, L) + J Pls,%,t)h(s,t}ds
0
where h(0,t) = 0. The Theorem now follows from the reflection

principle for the heat equation ([80]).




o ]

Theorem 3.2: Theorem 3.1 remains valid if the condition

u(x,t) = £(t) on o 1is replaced by

a(t)ulx,t) + B(t)ux(x,t) + y(t)ut(x,t) = f(t) on o

provided oa(t), B(t), y(t) and £f(t) are analytic in a neigh-
borhood of [O,tol and {(t) = (B(t),y(t)) is never tangent to
¢ and either never parallel to the x-axis or always parallel to

the x-axis.
Proof: [14].

The above reflection principles can be used to extend Theorem
2.1 from the case of solutions of (2.25 defined in a rectangle to
the case of solutions of (2.2) defined in a domain with moving

boundaries:

Theorem 3.3: The set. {(I+P)hn} is a complete family of solutions

to (2.2) in D for

. +id x-2%¢
B hoxt)=e ° F, lim-2=50,
no>w A
n
or
[n/2] _n=2k k
= ; SRR ~ N

e g kio (n-2K) Tk

Proof ([11], [16]): Approximate the boundary data by analytic

functions, reflect repeatedly across x = sl(t) and x = s_{t),
and use the fact that the sets 1) and 2) defined above are complete

for solutions of the heat equation defined in a rectangle.




.12
For numerical applications of Theorem 3.3 see (8].

We now turn our attention to deriving a reflection principle i
for solutions to the Helmholtz equation in " which is analogous
to the Schwarz reflection principle for harmonic functions
vanishing on a portion of a spherical boundary. Our aim is to
then use this reflection principle to deduce a continuation

theorem connected with the inverse scattering problem for acoustic

waves. Let D be a bounded, starlike domain in B" containing

the ball S = {x : |x| < a} in its interior, and let
u(x) = uf(r,8), 6 = (81,...,6n_1), be a solution of
2
Anu + AU = 0 (3.2)
in D\S.

If u(a,6) = 0, then in D\S we can represent u(r,0) in the

form ([27])

r
ul{r,8) = hir,0) + j sn~3K(r,s;A)h(s,0)ds (3.3)
a
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where

Anh =0 (3.4)

in D\S, h(a,6) = 0, and K(r,s;)) is a solution of the initial

value problem

rz[x #2001l AZK] = sZ[K L ]
EY E ¥ SS S

K(r,r;d) = - &2 07" ~a%} (3.5)

K(r,a;A) = 0 .

The solution of (3.5) can be found by iteration ([27]). Hence

we have the following theorem:

Theorem 3.4: If wu(r,6) is-a solution of (2.2) in D\S such

that u(a,8) = 0, then u(r,6) can be uniquely continued as a

* 2
solution of (2.2) into D = {(r,e) s [%—,e]e D\S}.

Proof ([27]): This follows from the representation (3.3) and the

Schwarz reflection principle for harmonic functions.

Now let n = 3 and suppose u(x) = u(r,6,¢) 1is a solution

of (3.2) in the exterior of a bounded simply connected domain

 such that wu(r,0,¢) satisfies the Sommerfeld radiation condition
lim r(ur—iAu) =0 . (3.6)
r-+o
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Then at infinity
ei}\r 1
u(r,8,9) = £(6,0;)) + 0[~] ’ €3.7)
s r
Suppose that on 32 we have ul(r,6,¢) = elkrcose .  The inverse
scattering problem is to determine § from a knowledge of
£(6,6;A). It is known that £(6,¢;A) uniquely determines

({551). From £(8,¢;X) we can determine u(r,0,¢) outside
the smallest ball S containing  in its interior (c.f. [60]).
Hence the problem is to continue wu(r,6,¢) across 23S and

- olArcosé _

determine the locus of points such that wu(r,6,¢)
This can be done (in theory!) by using Theorem 3.4 (after a
reduction to the case when u(r,06,¢) = 0 on 23S - c.f. [27])

in conjunction with R. P. Gilbert's "envelope method" (c.f. [10],

[41], (42]) as applied to harmonic functions.

Definition 3.1: Let £f(z) be an entire function of exponential

type. Then the indicator diagram of £f(z) is the interior of

the convex hull of the singularities of the Laplace transform
of £(z) (The indicator diagram can also be defined in terms
of the growth of f£(z) along rays passing through the origin -

CaE. [561).

Theorem 3.5: Let u(r,9,¢) = u(r,8) be axially symmetric (which

implies f(0,¢) = h(cos 0)). Define

(l+4zz)d€ E
(1-4izE~42%) /2

. 1
F(z) = J h (&) lz| < 3 .
=1
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o0

(Note that h(g£) = ] a P () F(z) =2 ] a (2iz)"). Then
n=0 n=0 n

F(z) can be continued to an entire function of exponential type.
If I 1is the indicator diagram of F(z), then u(r,0) is
regular in the exterior of IU I, where the bar denotes complex

conjugation.
Proof: [10], [24].

Remark: In [10] and [24] it was not possible to exclude the
possibility that wu(r,8) was singular along the axis 6 = 0 or

8 = m since at that time Theorem 3.4 was unavailable. However,
if in the proofs of [10] and [24] one uses Theorem 3.4 instead

of Lewy's reflection principle as applied to the axially symmetric

Helmholtz equation, one arrives at Theorem 3.5.

For another approach tc the inverse scattering problem see

[79].

Open Problem: Derive an analogue of Theorem 3.5 when { is no

longer a bounded domain.

Open Problem: In Theorem 3.2 remove the restriction that 1i(t)

is either never parallel to the x~axis or always parallel to the

X-axis.

IV. The Propagation of Radio Waves Around the Earth.

In this section we shall show how the transformation
operators obtained in Section II can be used to construct approxi-

mate solutions to the Fock-Leontovich equations describing

e N i . a
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radiowave propagation around the earth under the assumption of

a spherically stratified atmosphere but ignoring the effect of
the ionosphere ([38]). We assume that a vertical electric dipole
is situated on the surface of the earth, and without loss of
generality we assume that this point is the north pole. Let
(x,y) denote the point of observation of the electromagnetic
field, where x 1is the (normalized) distance along the surface of
the earth from the north pole to a point directly below the
observation point, and y 1is the (normalized) distance of the
observation point to the surface of the earth. Let a denote
the radius of the earth, k the wave number, and w(x,y) the
(normalized) Hertz potential (For precise definitions the reader
is referred to [38]). Then under the assumption of a perfectly
conductive earth and using the fact that ka 1is very large, we

are led to the following initial-boundary value problem for

wix,y):

wyy + iwx + y(l+g(y))w = 0 (4.1a)
wy(x,O) =0; 0 < x < X (4.1b)
wix,y.) = a exp (iy 2/4x)- U< R < X% (4.1lc)

iy, /5 0 ! 0 '

y 2 fiad
lim|w(x,y) - — exp(iy ™ /4x)| = 0; 0 < y < Yo (4.14)
%0 VX

where g(y) 1is a real-valued slowly varying function (in our

NS ——
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case assumed to be a polynomial) related to the refractive index
of the atmosphere and Xgr Y, are positive constants such that

ot Y < Yoo ¥y 2> xoz. (4.1la) is the Fock-Leontovich

X < X
equation, (4.1lb) reflects the fact that the earth is perfectly
conductive, (4.1lc) is a consequence of the Fresnel reflection
law and geometrical optics, and (4.l1c) is due to the presence of
a vertical electric dipole at the north pole. For a full
discussion of the derivation of (4.la)-~(4.1d) see [38] and [17].
The advantage of studying the equations (4.la)-(4.1d) instead of
the usual boundary value problem associated with the Helmholtz
equation is that it permits the investigation of not only the

illuminated region (y >> xz) and the shadow region (y << x2)

but also intermediate cases, namely the region of the penumbra.

illuminated region
X o

/
vertical dipole ——— Y,

s 7
X‘/

-

1l

M!/ﬂ[{@ﬂ]lﬁ A il

region earth

k,penumbra

d i

a

=\

We look for a solution of (4.la)-(4.1d) in the region

D= {ig,y) ¢+ 0 < x X Xo 0 ¢ vy & yo} in the form
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wix,y) = 2 exp(iy2/4x)
Vx
(4.2)
2 (Y 109
e [P(s,y)+P(-s,y)lexp(is”/4x)ds + u(x,y)
Vx 10

where P(s,y) 1is the kernel P(s,y,t) defined in Section II
(which in our case is independent of t) and u(x,y) € CZ(D)
N CO(E) is a solution of (4.la) such that uy(x,O) = 0. We
now want to determine the remaining initial-boundary data for
u(x,y) and derive a method for approximating u(x,y) as well

as the term

5 1¥
R J [P(s,y) +P(-s,y) Jexp(is2/dx)ds (4.3)
X ‘0
appearing in (4.2). Note that this last approximation is non-

trivial due to the factor of 2/vx appearing in front of the
integral sign. In view of the various approximations which need
to be made in order to determine the initial-boundary data for
ulx,y), a§ well as the fact that the boundary data (4.1lc) is an
approximation to begin with, the following a priori estimate is

of basic importance:

Theorem 4.1: Let ul(x,y) € c(D) /N c®(D) be a solution of (4.la)

in D such that uy(x,O) =0, u(x,yo) = f(x), u(0,y) = h(y).

Then there exists a positive constant M such that

X

2 0 " Y0 5
dsdn < M J |£(s)]“ds + j [h(n)|“dn| -
0 0

J uit-n)ds




L,

Proof ([17])): Define

X X

u(t,y)dr - [ £(z)dr.

ul(x,y) = I :

0

Then ul(x,y) satisfies a non-homogeneous version of (4.1la)
with homogeneous initial-boundary data. The result now follows
by applying standard eigenfunction expansion methods. Note that
due to the fact that in general f£f'(x) g L2(0,x0), it is not
possible (by these methods) to replace the weighted L2—norm

by a L2 norm on the left hand side of the inequality in Theorem

4.1.

We now proceed to approximate (4.3) and the initial-boundary
data f(x) and h(y) as defined in Theorem 4.1. From a result
on asymptotic expansions due to Erdélyi ([36]) it is possible to

show that

R v

Y -
J [P(s,y)+P(—s,y)]exp(isz/4x)ds = 2/2m(1+1i)P(0,y)+R(xX,y)
0
(4.4)
where |R(x,y)| < constant-.max IPs(s,y)—Ps(-s,y)

D
this result and the asymptotic .properties of Fresnel integrals

. By using

(after approximating P(s,y)+P(-s,y) by a polynomial) one can

2yl 2

show that to within O(4xo/y0 ) we have

£(x) = P (x) + VX exp(iy®/4x)P,(x)

(4.5)
h(y) = P3(y)
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where Pl(x), Pz(x) and P3(y) are polynomials. A similar
analysis allows us to approximate (4.3) for 0 < x < Xqr

0 <y < Yg- For details the reader is referred to [17].

Our task now is to approximate u(x,y) satisfying (4.1la)
along with the initial-boundary data uy(x,O) = 0, u(x,yo) = f(x),
u(0,y) = h(y) where f(x) and h(y) are given by (4.5). To
this end we shall again make use of the transformation operators

constructed in Section II.

Theorem 4.2: Assume Xg 2 y02 and let An = 22% T (n—l/2)§£.
Let Yo
—aX X
h, (%,y) = cos/K;'y & 0 ;e 2l,22,...
~i 2x
h2n+l(x,y) = cos |y e sy R =N ADE .

Then with respect to the norm defined in Theorem 4.1, the set

{un} where

i

un(x,y) = hn(x,y) o J [P(s,y)+P(—s,y)]hn(s,y)ds

0
is a complete set of solutions to (4.la) satisfying (4.1b).

Proof ({17)): As in Theorem 2.1, it sufficies to show that the

set (hn} is complete for solutions of hyy+ihx = 0 satisfying

hy(x,O) = 0. But this follows from Theorem 4.1 and Levinson's
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-iAnx 2
result that e is complete in L (O,XO) af

R 5%1'- (In| + %) (c.£. [56]).
0

To approximate u(x,y) we now set

N
N )
u(x,y) = § ayu (x,y) (4.6)
k=0 XX
for a given integer N and minimize (in RzN) the quadratic
functional
N 2
Q(a,,;,...,a,) = u (x,y,)-f(x)
1 N H Yo HL‘?(o,xo)
(47}
N
+ | ]u (o,y>—h(y)sz
I (O,YO)

Open Problem: Treat the case when the earth is no longer perfectly

conductive. (The generalization is non-trivial!)

Open Problem: Treat the case when Yo = = i.e. avoid the use

of the geometric optics approximation (4.lc).

v. The Propagation of Acoustic Waves in a Spherically

Stratified Medium.

In this section we shall show how the transformation operators

constructed in Section II can be used in the investigation of
acoustic scattering problems in a spherically stratified medium.

We first consider the case when the incoming wave is scattered by




ok

the presence of a spherically stratified quasi-hcmogeneous
medium, but in the absence of any obstacle. If we denote the

velocity potential by wu(x) and the velocity potential of the

scattered wave by uS(x) (factoring out a term of the form
e-lwt) we arrive at the following set of equations for the
determination of us(x):
u(x) = elAz + us(x)
(5.1)
Aju + A2(1+B(r))u = 0 in R3
Ju
lim £lz=" = idu | = 0
r s
Y -»co
where A is the wave number, x = (x,y,2), r = |x|, and
cO 2

B(r) = rTE3 ) - ' where cf{(r) 1is the speed of sound and

2
cy = lim c(r). We make the assumption that B(r) = Of(e =

Y-+
and 0 < A < 2y(v2-1). We look for a solution of (5.1) in the
following form: For r < 1 we represent u(x) as
u(x) = y anun(r)Pn(cos 0)
n=0
(52}
u () = (I+4G)r"

where I + G 1is the transformation operator defined in Section 1I,

~

Pn(cos 0) is Legendre's polynomial, and the constants a, are to

be determined. For 1r > 1 we represent u(x) as
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u(§) = (I+§)[eiAz + nz bnhél)(xr)Pn(cos e)] (5.3)

0

where (I+K) is the transformation operator defined in Section
II, hél)(xr) is a spherical Hankel function, and the constants

bn are to be determined. If we now use Sonine's formula to

expand elxz and require u(x) and its first derivatives to
agree at r = 1 we are led to the following algebraic system for

the determination of the comstants ay and bn:

(1) _ .n :
anun(l) - bn[(zﬂf)hn (Ar)]r=l = (2n+l)i [(ylj)]n()\r)}r:l
(5.4)
[ " d (l) s . (_i___ .
anun (1) bn{a? (E+§)hn <Ar)}r=1 A [dr (I+§)3n(xr)]r=l

where jn(Ar) denotes a spherical Bessel function. From (5.4)
it is now possible to deduce.by using Crammer's rule and uniform

estimates for Bessel and Hankel functions that

sy onan - offi]]
|J1 K(1,s:0) 3 (As)as| = O[L2B

(5.5)

N n
IJ K(l,s;A)h(l)(As)dS, -0 F(n+1é2)2
1 g ni

where B =y - A2/4Y and K(r,s;A) is the kernel of the operator

I + K. These estimates imply that
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o ool
{5.6)
21,2

which imply that the series representations for u(x) converge
and satisfy (5.1). The uniqueness of the solution follows from
the fact that for A real, un(r) and (I+K)hél)(Xr) are

linearly independent solutions of

2

g+ % g’ + [A2(1+B(r))— n(ntl) ]y 5 . (5.7)
h

For details ©of the above calculations the reader is referred to

[26] and [30].

We now turn our attention to the same problem considered
above, except that in addition to the spherically stratified
medium there is a "hard" obstacle D present. We assume that D
is bounded, starlike, and has smooth boundary 8D with outward
pointing unit normal v. In this case the equations for deter-
mining the velocity potential u(x) become

u(x) = ethe 4 us(x)

hya + A2 (1+B(x)ju = 0 in B\D

(5.8)
du

3 = 0 on b

Dus
lim r|{+=== = 1iAu
r s
r—btx\

-
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2
We again assume that B(r) = O(e Y¥')  and restrict ourselves to

values of X such that X < 2yb where {|x| < b} D. We look

for a solution in the form

u(r,6,¢) = h(r,8,¢) + K(r,s;A)h(s,8,¢)ds (5.9)

where K(r,s;x) is the kernel of the transformation operator
I + K and h(x) is a solution of

Agh + ¥h e 0 (5.10)

in- B2\D of the form

h(x) = ei>‘z + hs(x)

Th (5.11)
lim r|{=—= - iAh_| = 0 .
ar s
Yo
Following Ursell ([74]; see also [50]) we represent hs(x) in

the form

hs(x) = J u(E)G(E;f;A)dwE (522D
9D
where p(f) 1is a potential to be determined and G(&;x;A) 1is
a fundamental solution of the Helmholtz equation in the exterior

of {|x| < b} satisfying the Sommerfeld radiation condition, and

[37 4 a]u = 0 (9:13)
or




where a = eiﬁ, 0 < § < m. The function G(&;x;)A) can be
constructed by separation of variables and is introduced to avoid
the problem of the non-invertibility of the integral equation
associated with scattering problems for A an eigenvalue of the
interior Dirichlet problem of the Helmholtz equation ([74])). 1If
we now substitute ei)‘Z + h, (x) into (5.9) with h_(x) defined
by (5.12), interchange orders of integration and let X tend to

9D, we arrive at a Fredholm integral equation for the determination

] of u(g) of the form

00 = (T+rOu 5 x € 3D (5.14)

i where f(x) = %U (I+K)elxz and T(A) 1is a compact integral operator

on the Banach space c°(3p) ([1l], [33]).

Theorem 5.1: Let 0 < A < 2yb. Then in c°(3p), (I+T(A))"t
exists.
Proof ([33]): Since K 1is a Volterra operator, (I,+K)-l exists,
and hence if (I+T(\X))u = 0 we can conclude that (I+T0(A))u =0
where T0 =T . From the choice of G(&;x;A) we can now

5 B (x)=0 g
conclude that u(f) = 0, and hence by the Fredholm Alternative
(147 (A)) "1 exists.

Note that one advantage of the integral operator method outlined
above over the straight forward use of integral equations is that
|

the resulting integral equation is defined over a bounded two

dimensional region instead of an unbounded three dimensional

T S —— .
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Open Problem: Investigate problem (5.8) in the case when D

is no longer starlike with respect to the origin. For a pre-

liminary investigation of this problem see (29].

Open Problem: Viewing I+T(X) as an operator valued analytic

function of )\, determine the nearest singularities to the

origin of (I+T(A))—l. Such a result would lead to new construc-

olving (5.8) obtained by expanding (I+T(A)) T

n

tive methcds for -

in powers of X and determining the coefficients recursively.

For a survey of the results of this section in the case

when B(r) has compact support see [28].

VI. Low Frequency Approximations to Acoustic Scattering

Problems in a Spherically Stratified Medium.

In this section we shall consider the problem of approximating
the solutions of the problems discussed in the previous section
in the case when the wave number X is small. In the case of a
homogeneous medium, the problem of low frequency approximations to
scattering problems has been extensively investigated by Ralph
Kleinman and his co-workers (c.f. [51], [52]). We first
consider the problem of scattering by a spherically stratified

medium in the absence of an obstacle, i.e. to determine the velocity

potential wu(x) from the equation

u(x) = elAZ + x5 (%)
o S "~
2 ; 3

A3u + X7 (1+B(r))u =0 in R (6.1)
Iluc
lim r I IXUS = 0
4 »u

Al s s o
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where we now assume that A, 1in some sense, is small. In this
case a classical method for solving (6.1) is to reformulate

the problem as the integral equation

. ix|x-¢g|
o = o] g e thugar .
3 E=G :
R

It can be shown (c.f. [35]) that (6.2) can be solved by iteration,
yielding the first and higher order Born approximations,

provided

% J r|B(r) |dr < 1. (6.3)
0

Recent investigations in this direqtion have been made by

Rorres ([63]) and Ahner ([1l]). We propose to study (6.1) by the
method of integral operators, and shall show that for X satis-
fying (6.3) the Born approximations are recovered, whereas our
method also yields approximations in the case when (6.3) is no
longer valid. As in the previous section we assume that

r2
) and

B(x) = O(e_Y
0 < A < 2yiv2=1) . (6.4)

We restrict ourselves to r > 1 and recall from Section V that

in this case (c.f. (5.3))

(1)
n

o~ 8

u(x) = (I+K) [e“z + b h ' (Ar)P_(cos e)]; r>1 (6.5)

n=0

4
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where bn = bn(A) is given by (c.f. (5.4))
(2+K) [ (20+1)i"5 Oy +p )R 01w (1) (6.6)
= u (1) & @ ()i 0o+ ont oy

Az

The quantities (I+K)e1 and (I+K)hél)(kr) can be readily

approximated, for small and moderately large value of A, by
truncating the iterative prgéess used to construct the kernel
K(r,s;A) of the operator K (c.f. [30]). Hence the problem is
to use (6.6) to approximate bn(k). From (6.6) we have that

bn(k) is an analytic function of X 1in a neighborhood of the

origin and has a Taylor expansion of the form

o
b () = A2 § g " (6.7)
k=0 "
Hence a low frequency approximation to bn(A) is given by
bn(k) N bn0A2n+3. For larger values of )\ such that (6.4) is

still valid bn(k) can be approximated by using (6.6) in con-
(1)

junction with the asymptotic expansions 6f jn(kr) and hn (Ar) .
Returning now to the low frequency approximation bn(k) N bn A2n+3
0
we note that (c.f. Section II)
Xt 4
G(l,s;)\) = - 5 J S(1+B(s))ds + O(X7)
J (6.8)
2

R(1,837) = ~ &

5 Jl sB(s)ds + 0(A4)
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and hence from (6.6) we can deduce that
.n+l n 2
1 2 n! 2n+2
Bao = Zn¥l ((Zn)!] JOS B(s)ds . (6.9)

This result agrees with the first Born approximation (c.f. [59])

in the case when ) satisfies (6.3).

We now briefly consider the probiem of low frequency
approximations to acoustic scattering problems in a spherically
stratified medium when an obstacle is present. For the sake of
simplicity we restrict ourselves to the case when the obstacle
is a "soft" sphere of radius one centered at the origin and
B(r) = 0 for r > a > 1. More general obstacles as well as the
case when B(r) no longer has compact support can also be
treated with similar (although more complicated) results (c.f.

(28]). In our simple case the relevant equations are

u(x) = elkz + u_(x)
~ S ~
2 > 3
Agu + AT(14B(r))u = 0 in B7\Q (6.10)
Bug
lim r T 1Aus = 0
T >0
where & = {x : x| < 1} . The velocity potential wu (x) of the
scattered wave can be found in the form
u (x) = § b.) 1+ h Y (r)p_(cos 6) (6.11)
S ~ n::O n ~ o~ n n
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where bn(x) is determined by the method of separation of
variables ([11], ([25]). It turns out that bn(l) is an analytic
function of X in a neighborhood of the origin and has a Taylor

expansion of the form

2n+1 k

bn(X) = X X . (6.12)

kzo Pnk
Note that in the present case bn(A) has a zero of order 2n+l
at the origin, whereas in the case of scattering without the
presence of an obstacle bn(A) had a zero of order 2n+3 ;
(c.f. (6.7)). In (6.12) it can be seen after a short calculation
([11], [25]) that bn0 is independent of B(r) and

a —
v ¥ e ynl ” J B(s) [s2M*24 s72M25]4ds (6.13)

il

where Yno and Ynl are known constants (independent of B(r)).
Hence for low frequencies the scattering due to the obstacle
dominates the scattering due to the inhomogeneous medium and the
first low frequency approximation that takes the inhomogeneous

2n+1l

: p G A,
medium into account is bn(X) v | (bn0+bnlk).

The analysis in this section can also be used to investigate
the inverse scattering problem of determining B(r) from a

knowledge of the far field pattern defined by
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£(8;1) = lim re iAr, (%)
Y- S
(6.14)
=% ) (—i)“*lbn(x)p (cos 6).
n=0 .

We restrict ourselves to the case of problem (6.10).

PSR S

oo}

Theorem 6.1: The set {r2n+2+r_2n—2r} is complete in

n=0
L2[1,a].

Proof: [11], [25].

c 2
If we recall now the fact that B(r) = [ET%T] -1 where
c(r) is the speed of sound and c, = lim c(r) is asswaed known,

0

r-w

we have from (6.13) and Theorem 6.1 the following result:

Corollary: For problem (6.10) the far field pattern £(8;}),

0 <6 <m 0<AK AO (where AO is an arbitrary positive

number) uniquely determines the speed of sound in the inhomogeneous

medium.
e +2, - % .
By orthonormalizing the set {r2n 2+r 2n_2r}n=0 in L2[1,a]
and using (6.13) to compute the Fourier qoefficients we can also
obtain approximations to B(r). However, since Ynl tends to

infinity as n tends to infinity this approximation procedure

is unstable.
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Open Problem: Give a stable method for constructing B(r) from

£CBA)Y

Open Problem: Consider the problems treated in the last two

sections for the case when the source is located a finite distance
from the scattering obstacle instead of being a plane wave coming

in from infinity.

VII. Heat Conduction in Two Temperatures.

In a paper on continuum thermodynamics by Gurtin and Williams
([46]) it was shown that under certain physically reasonable
hypotheses one could consider heat conduction being governed by
one temperature whereas heat supply by another. It was then
shown that for an extremely general class of simple materials
these two temperatures turn out to be equal. However, in the
case of a non-simple material, in particular one in which the
thermodynamic quantities depend on the conductive temperature
and its first two spatial derivatives, Chen and Gurtin showed that
this was no longer the case ([19]). 1In particular for an isotropic
material the linearlzed version of the energy equation takes the

form

34

€ =
Jt

. 3
= kAp + ca 3 L + aimrt) CTad)
where ¢(x,t) 1is the conductive temperature, ¢ the specific
heat, k the conductivity, and a is the temperature descre-
pency relating the conductive temperature to the thermodynamic

temperature by the relation
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0 = ¢ - ad¢d . {7<2)
From the second law of thermodynamics we have the fact that
a > 0. (7.1) is a particular example of an equation of pseudo-

parabolic or Sobolev type. Such equations have been the focus of
a considerable amount of interest in recent years, and the

reader is referred to [67] and [68] and the references contained
in thses papers for further information. In this section we shall
restrict ourselves to (7.1) and for the sake of simplicity set all
the constants appearing in (7.1) equal to unity. Our primary
concern is the solution of initial-boundary value problems for
(7.1) and we first consider the case of one space variable. We
begin by introducing the idea of a Riemann function. Let L and

M denote the operators defined by

L{ul u -u, +u

xxt €t xXx (7.3)

M(v] v Ve

XX e X

respectively. Then the Riemann function v(x,t;¢,1) for

L{u] = 0 is defined by

Mlv] = 0
v (E,t:8,7) = 1~
7 edd
vig.,t:€,7) = 0
ViX,Ti&,t) = 0
and can be constructed by iteration ([10], [21]). If wu(x,t) is

a solution of
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L[u] = gq(x,t)

ul0,t) = 0
(7.5)
ux<0,t) = g(t)

u(x,0) = 0

where q(x,t) 1is continuous and g(t) continuously differentiable

then
[g'(T)vt(O,T;X.t)+g(r)vt(0,r;x,t)]dT

(7.6)

(t X
it j J q(ng)V (ng:x,t)dng .
0’0 F

Now suppose we want to construct a solution to the initial-boundary
value problem

L[u] = q(X:t)

w0, ) = @ (7.7)
u(x,0) =0
u(a,t) =0

(We note that the case of non-homogeneous initial-boundary data
can easily be reduced to this case). From (7.6) we have the
following integral equation for g(t) = ux(O,t):

=
y(t) = g(t)vt(O,t;a,t) 5 f [Vt(O,r;a,t)-vtt(O,T;a,t)]g(r)dr (7.8)

0

where vy(t) 1is a known function.

Lemma 7.1: vt(O,t;a,t) # 0.

Proof ([10]),(21)): From (7.4) we have that p(x) = vt(x,t;a,t)

satisfies yu__-p 0. but p(a) = 0 and hence 3u(0) = 0 implies
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u(x) = 0 for 0 < x < a which implies u'(x) = 0 for

preen

0 < x < a, and this is a contradiction since from (7.4) u'(a) = -1.

We can now conclude that the Volterra integral equation
(7.8) is invertible. Hence if we solve (7.8) for g(t) and
substitute this back into (7.6), we have the (unique) solution

to (7.7): b

Theorem 7.1: There exists a unique solution of the initial-boundary

value problem (7.7).
Proof: L2

We note in passing that Theorem 7.1 can easily be extended
to treat the case of pseudoparabolic equations in one space
variable with variable coefficients ([10]),[21}). The concept of
a Riemann function for pseudoparabolic equations can furthermore
be extended to the case of pseudoparabolic equations in two space

variables ([10], [22]), [45]).

We now turn our attention to the case when (7.1) is
defined in a cylindrical domain D x (0,T) where D 8", n > 2.
For simplicity we again assume that all the constants appearing
in (7.1) are equal to unity and set n = 3. (Other values of n
can be handled with slight modifications). We assume that D is

a bounded, simply connected domain with smooth boundary 4D,

and consider the initial-boundary value problem
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A, =m,. + Aa =0 in B X (9,.T)

uix,t) = f(§,§) on aD x [0,T) (7.9}

ulx,;0) = 0 in b

where f(f,t) is a continuously differentiable function prescribed
on 3D x [0,T]. We note that the case of non-homogeneous iniﬁial
data can be reduced to a problem of the form (7.9) by first

solving an initial value problem by means of the Fourier trans-
form (c.f.[62]). From the maximum principle for pseudoparabolic
equations ({71], ([72]) we have that a solution to (7.9), if it
exists, is unique, and hence our problem is to derive a construc-
tive method for obtaining the solution to (7.9). We shall do this
by the use of a fundamental solution and the method of integral
equations (we note that this approach can also be used for

pseudoparabolic equations with variable coefficients ([64]). We

define a fundamental solution of A3ut—ut+A3u = 0 by the formula
C[2371)
1 ) .
F(g,t;i,r) = - FT') R exP -UR + ~E~7 (t-1) |du
ji=Spes S L
R . (7.10)
S ) an(§;§)(t-r)
n=1
where R = Ix-gl and a,(x;€) = 1, and look for a solution of
(7.9) in the form
i 52r
u(x,t) = -2”— [ J plE ;%) === (X, L;E;T)dsdn {711}
-~ ) !0 . oVaAn ~




S

where Vv 1is the unit normal pointing into D and p(§,T1) 1is a
continuous density to be determined. Then from the known dis-

continuity properties of double layer potentials for metaharmonic

functions we have from (7.11) that

-R
) s e 0. e
ft(’:'t) = p(x,t) [ p(g.t)av g~ ds
aD
ft 4 n-2
+ J p(x,T)| I v, (£=1T) drt (7.12)
0 i n=2
t 33F
+ IO I O(§.T) SVITIE (f,t;g,T)dsdT
9D

where the Y, are known constants (c.f. [23]). The integral

equation (7.12) is of the form (in the Banach space CO(BD x [0,T]))

ft = (.I.'T”:1+£‘ )p (7.13)

where (I-T)—l exists (from the theory of metaharmonic potentials)
and Ll and L2 are Volterra operators. Hence in Co(ao X [(0,T])
-] ; i
-T 3 b N = -4 + "
(I-T+L;#L,)) ™ exists and o = (I-T4L)+L,)Tf,

Open Problem: Consider oblique derivative problems and problems

defined in domains with moving boundaries for pseudoparabolic

equations.

Open Problem: Consider problems without initial conditions for

pseudoparabolic equations (c.f. [73] for the case of the heat

h | equation.)
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VIII. Inverse Problems in the Theory of Heat Conduction.

In this section we shall consider two of the classical
inverse problems for the heat equation, the problem of solving
the heat equation backwards in time (or the final value problem
for the heat equation) and the inverse Stefan problem. We shall
restrict ourselves to the case of the heat equation in two space
variables. Other inverse problems for the heat equation are also
common, and the reader is referred to [2] and the references at
the end of [61] for further information. We shall first consider
the case of the final value problem for the heat equation and
briefly indicate how an approximate solution can be obtained
through the nethod of quasireversibility ([54], [58]) and the
theory of pseudoparabolic equations as outlined in Section VII.
The final value problem for the heat equation can be formulated
as the problem of determining the temperature u(x,y,t) in
D x (0,L), where D is a bounded simply connected domain with

smooth boundary 3D, from the equations

uxx+uyy = u, an B x (0,.1) (8.1a)
u(x,y,t) = 0 on 3D x (0,1) (8.1b)
wix,y, LY = £0k,v) {8 lec)
where f(x,y) 1is a prescribed function vanishing on 93D. 1In

physical terms we are asking how must the body D be heated in
order to have a prescribed temperature f(x,y) at time ¢t = 1.

This problem is improperly posed in the sense that a solution does
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not in general exist, even for f(x,y) analytic, and if a
solution does exist, it does not depend continuously on the
"initial" data f(x,y) (c.f. [61], [69]). However if instead

of (8.la) we consider the pseudoparabolic equation

BAzut+A2u—ut =0 (8.2)

where B8 is a small positive constant, we have from Section VII that

(8.2), (S.ib), (8.1c) is a properly posed problem and can be
solved by the method of integral equations (if the Fourier trans-
form is first used to transform (8.2), (8.l1b), (8.1lc) to a non-
homogeneous boundary value problem with homogeneous initial
conditions). The question, of course, is what relation does the
solution of (8.2), (8.1lb), (8.1lc) have with the solution (if it
exists!) of (8.la), (8.1lb), (8.1lc)? The answer to this question

is contained in the following theorem of Ewing:

Theorem 8.1: Let wu(x,y,t) be a solution of (8.la), (8.1lb)

such that ||u(x,y,1) - £(x,¥)|] , < e, [|lulx,y,00]|] , <M, where
L L

€,M are positive constants, and let v(x,y,t) be a solution of
(8.2), (8.1b), (8.lc). Choose B8 = 1/log(M/e). Then for every
t > 0,

[fu-v[[ 5 = o((-log(e/m)] 1)
L

where the constant implicit in the "O" notation depends on t.
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Note that the constant M in Theorem 8.1 can be determined

in practice from a rough estimate of the maximum temperature

attainable in the body D during the time interval [0,1].

For other methods for solving the heat equation backwards

in time see [61] and [7].

We now turn our attention to the inverse Stefan problem
for the heat equation in two space variables ([11], ([20]). Assume
that a bounded simply connected domain D with boundary 9D is s
filled with ice at 0°C. Beginning at time t = 0 a non-negative
temperature Yy = y(x,t,t) (where Y(x,y,0) = 0) 1is applied to 23D.
The ice begins to melt and we shall let the interphase boundary
I'(t) between ice and water be described by
r(e) = {(x,y) : ¢(x,y,t) = 0} , with the water lying in the region

d(x,y,t) < 0. The I'(t)

water————p
tice at 0°C

(normalized) equations determining the temperature u(x,y,t) of

the water are




—

-0
xx+uyy = u,. in dilx .y, . £} < 0 (8.3a)
u=% on @b x [0,T] (8.3b)
Ju 1 3¢
u =0, =— = = (8.3c)
I () WVlpy  1VeT 3ty

where Vv 1is the normal, with respect to the space variables, that
points into the region ¢(x,y,t) < 0, and the gradient is taken
with respect to the space variables. The inverse Stefan problem
is to find y(x,y,t) given ¢(x,y,t), i.e. how must D be
heated so that the ice melts along a prescribed path? This
problem is also improperly posed in the sense that in general a
solution does not exist, even if ¢(x,y,t) is analytic. 1In the
following we want Lo obtain sufficient conditions on ¢(x,y,t)
such that a solution does exist to the inverse Stefan problem.

Our approach also yields a constructive method for obtaining

y(x,y,t) ([11], [20]) but we shall not pursue this here.

For each fixed ¢t, t e [0,T], 1let 2z = ¢(z,t) map the

unit disc conformally onto a domain Dt such that Dt:) D and

define ?(c,t) = ¢(E,t) for t real. We shall show that a

solution to the inverse Stefan problem exists if

d(x,y,t) = Im ¢-1(z,t)
(8.4)

1 - el
= 51 ¢ “(z,E)=¢d “(z2,t)],

It is assumed that ¢(§,t) depends analytically on the parameter

B
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Note that under the assumption (8.4) a local solution to (8.3a),
(8.3c) exists by the Cauchy-Kowalewski Theorem. Our problem
is to establish the existence of a global solution, i.e. to

analytically continue the solution of a non-characteristic

*

Cauchy problem for the heat eguation. Let 2z = xtiy, 2z = x-iy
* ==

(note that z = z if and only if x and y are real) and

define

* ’ x E
4 =
Uiz, 2 »E) = u{z & ; Eo% ot

7 21
(8.5)
* 1 (z-£) (z'=E)
- z- Z =c
V(z,z y£) = oo exp{ Tt }
* *
Then Ufz,z ,t) and WV(z,z ,t) are solutions of
LU} B e =l =
zz* 4 ¢
(8.6)
MIV] 5V« +2V =0
= Taa® 4 €

respectively for t # 1. Let 1T be real and for t on the circle
[t-t] = 6§, § > 0, let G(t) be a cell whose boundary consists

- - *
of a curve C(t) 1lying on the surface ¢ 1(z,t) = ¢ l(z t) and

line segments lying on the characteristic planes 2z = § and
* =

z = £ respectively which join the point (£,£) to C(t).
* *
Integrating VL(U]-UM(V] over the torus {(z,z ,t):(z,2 ) € G(t),
[t=t] = §} gives
- ] 2 "
U(E,E,1) = 4"11“ |VUIU"—V(",*(1}’. ]dt
C(t) -

(8.7)




e

where UZ and UZ* can be computed from the Cauchy data (8.3c)
(c.£. (21}, [20])). Due o (8.4}, it can be shown ([11}, [20])

that U(£,E,1) as defined by (8.7) is analytic in a region
containing D x [0,T] and (8.7) gives the solution of the inverse
Stefan problem if we evaluate it on 3D x [0,T]. Note that in
order to get a physically meaningful solution of the inverse Stefan
problem we assume that (x,y,t) =0 on 2aD x [0,T]1/) ¢ > 90 and
choose the conformal mappings ¢(Z,t) such that ul(x,y,t) > 0

for ¢ < 0.

For a partial extension of these results to parabolic

equations in three space variables see [70].

Open Problem: Can the inverse Stefan problem be approximated by

appropriate solutions of pseudoparabolic equations?

Open Problem: What are necessary conditions for [ (t) to be an

interphase boundary for the Stefan problem? For a conjecture in

the case of one space variable see [48].

IX. Runge's Theorem for Parabolic Equations in Two

Space Variables.

In this last section we shall outline how the method of
integral operators can be used to obtain a version of Runge's
Theorem for parabolic equations in two space variables. Our
approach is a generalization of that used by Bergman ([3]) and
Vekua ([75]) to derive a Runge Theorem for elliptic equations in

two independent variables, and the new problems created in the
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present case are that classical solutions of parabolic equations
with analytic coefficients are not necessarily analytic in the
time variable, and in the case of analytic solutions we are
forced to work with analytic functions of two complex variables
instead of one complex variable as in the case of elliptic
equations. A further problem is the need to develop an analogue
for parabolic equations of the Riemann function for hyperbolic
equations. Details of the results in this section can be found
in [11] and [19]. For Runge's Theorem for parabolic equations
in one space variable see Theorem 2.1 and Theorem 3.3 of these

lectures.

We consider the parabolic equation

uxx+uyy+a(x,y,t)ux+b(x,y,t)uy+c(x,y,t)u = d(x,y,t)ut (91
defined in a c¢ylinder D x (0,T) where D 1is bounded simply
connected domain (we assume without loss of generality that D
contains the origin) and we make the assumption that the
coefficients of (9.1) are real valued for x,y and t real and
are'entire funcitons of their independent complex variables. We
also assume that d(x,y,t) > 0 in D x (0,T). Let 50(: D be
simply connected and compact, ¢ > 0, and DD D, 350 where

Dy is simply connected and such that aDl is analytic.
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Theorem 9.1: For every € > 0 there exists an analytic solution

ul(x,y,t) of (9.1) in D, x (0,T) such that

1

‘k max Iul-u| < €.
DlX[G/Z,T—G/ZJ

Proof ([11], [19]): From the Weierstrass approximation theorem

and the maximum principle we can approximate u(x,y,t) by a
solution ul(x,y,t) assuming analytic boundary data on dD.
The Theorem now follows from the fact that solutions of (9.1)
assuming analytic Dirichlet data on an analytic boundary are

analytic (c.f. [39]).
Now make the change of variables

z = x+iy
* (9.2)
z = X-1iy

mapping mz, the space of two complex variables, onto itself.

Then (9.1) becomes

* * * *

(9.3}
K S ! . 3 ]
where U(z,z ,t) = u(x,y,t), A = K(a+1b), B = Z(a-lb),
cC = % ¢, and D = i d.
*
Theorem 9.2: Let ul(x,y,t) = Ul(z,z ,t) Dbe an analytic solution

of (9.1) in a neighborhood of the origin. Then there exists a

*
kernel E(z,z ,t,1,s8) (which is independent of ul(x,y,t)) and

- — ,
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an analytic function f(z,t) such that

ul(X,Y;t) = Re g{f}

(Z -
= Re{— T exp{~J0 A(z,o,t)do} - ?
L |
,i
1 - 2 dsdt :
. % J Elz,z;t,c8)E(z/2(l-s" ) ,1)———— : i
-1 v'/l_-_S_Z— ]

, t) and Ul(z,O,t) have the same domain of

NN

Furthermore, n 3

*
regularity. E(z,z ,t,T,s) 1is an entire function of its independent

complex variables except for an essential singularity at t = t.

Proof ([11]), [18], [19]): Substitute P{f} into L[U] = 0 and

integrate by parts to obtain a differential equation and initial
*
conditions satisfied by E(z,z ,t,T,s). This initial value

problem can be solved by iteration.

By using the operator P we can construct the complex

Riemann function for L[U] = 0 ([1YX), [19], [49]) which is

defined as the solution of the singular initial value problem

M[R] = R 2AR) _ 3LBR). 4 cr + - (DR) =0
z 32 ot
* 1 2 *
REZ,Z o E) ] 5. = = exp Blo,& ,t)do (9.4)
z = &
*
* 1 Z
Rz, 2z ,t) o exp Ble0 . t)dey
Z"‘C *

£
2

[— | » A
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Example: For the heat equation we have (see Section VIII)

* *
(z=€) (z =£ ))
4(t-1)

* L
REz,Z2 E = o exp

The complex Riemann function is needed in order to obtain the

following theorem:

Theorem 9.3: Let ul(x,y,t) be a solution of (9.1) such that

ul(x,y,t) is analytic for (x,y) € Dl' t ¢ & where 61 is a

*
neighborhood of [§,T-6§). Then Ul(z,z (E) (= ul(x,y,t)) is

*
analytic in D; X Dl % G where Dl = A% 9 ¥ g Dy},
*‘{*.__'if }
Dl =E iz L e Dl

Proof ([11], [19]): Use Stokes Theorem to represent ul’x,y,t)
in terms of the complex Riemann function, where the domain of
integration is an appropriate three dimensional torus situated in
¢3, the space of three complex variables. The regularity of
Ul(z,z*,t) now follows from the regularity properties of the
complex Riemann function, which is an entire function of its
independent complex variables except for an essential singularity

at & = 7T,

5

Example: ul(x,y) - \J~k.\~:2+-y2)-—'L (this is not a solution of (9.1)

for any choice of the coefficients!) is real analytic for all x

and y, in particular in Dl = {(x,y): x2+yz<2} . However as a
* *
function of z and z , U(z,z ) = u(x,y) 1is sinqular in
* ' *
Dl X Dl , for example at (i,1i) € Dl X Dl

.-‘-.-.-.'---‘.-'-ﬁH-Iﬂ.ﬂ--h--i-ﬂn.-u--n-m-t

i
j
|
i
!:
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Theorem 9.4 (Runge's Theorem): Let u(x,y,t) be a solution of

(9.1) in D x (0,T). Then for every € > 0 there exists an

entire solution uz(x,y,t) of (9.1) such that for BOCZ Dl(: D

_ max !u-u2| S E
qu[ﬁ,T—él

Proof ([11], [19]): Theorem 9.1 implies that u(x,y.t) can be

approximated on 51 x [§/2,T-8§/2] by an analytic solution
ul(x,y,t) of (9.1). Theorems 9.2 and 9.3 imply that

ul(x,y,t) = Re g{f} where f£(z,t) is analytic in the product
domain Dy x é: Since product domains are Runge domains (c.f.[77])
f(z,t) can be approximated by a polynomial fn(z,t) on

D, X E’O where [§,T-6]C 50 ¢ &£ Hence we can choose

uz(x,y,t) = Re P{fn} for n sufficiently large.

Open Problem: Derive Runge's Theorem for second order parabolic

equations in n > 3 space variables (c.f. [32] and the references

cited there).

Open Problem: In Theorem 9.4 can 50 x [§,T-8] be replaced by

B x [0,T]? Can the cylindrical domain be replaced by a domain

with moving boundary?
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